Ocean for Future

Ultima Clock Widget

  • :
  • :

che tempo che fa

Per sapere che tempo fa

Per sapere che tempo fa clicca sull'immagine
dati costantemente aggiornati

OCEAN4FUTURE

La conoscenza ti rende libero

su Amazon puoi trovare molti libri sulla storia del mare (ma non solo) e sulla sua cultura :) clicca sull'immagine ed entra in un nuovo mondo :)

i 100 libri da non perdere

NO PLASTIC AT SEA

NO PLASTIC AT SEA

Petizione OCEAN4FUTURE

Titolo : Impariamo a ridurre le plastiche in mare

Salve a tutti. Noi crediamo che l'educazione ambientale in tutte le scuole di ogni ordine e grado sia un processo irrinunciabile e che l'esempio valga più di mille parole. Siamo arrivati a oltre 4000 firme ma continuiamo a raccoglierle con la speranza che la classe politica al di là delle promesse comprenda realmente l'emergenza che viviamo, ed agisca,speriamo, con maggiore coscienza
seguite il LINK per firmare la petizione

Ultimi articoli

  Address: OCEAN4FUTURE

A Preliminary Investigation of the Effect of Ocean Thermal Energy Conversion (OTEC) Effluent Discharge Options on Global OTEC Resources part II by Gerard Nihous

Reading Time: 11 minutes

 

.livello difficile
.
ARGOMENTO: ENERGIE ALTERNATIVE
PERIODO: XXI SECOLO
AREA: NA
parole chiave: OTEC

 

One-Dimensional Steady-State Model of the Water Column with OTEC
2.0 Section

As mentioned in Section 1, a vertical one-dimensional steady-state model of the water column was previously used to evaluate large-scale OTEC resources [4]. Symbols used in describing this model and its present extension are listed in Appendix A. A diffusion-advection equation for seawater temperature was solved from the seafloor (z = 0) to the base of a mixed layer of thickness hm (z = L). The OTEC process was represented by two sinks, in the mixed layer (warm seawater intake) and at z = zcw (cold seawater intake), as well as by a source at z = zmix (mixed effluent discharge). The present study extends the model to cases of separate OTEC evaporator and condenser effluent discharges, at z = zevap and z = zcond, respectively. This is schematically illustrated in Figure 2. In mathematical terms, sources (depicted as circles with a dot) and sinks (depicted as circles with a cross) are Dirac distributions centered at specific vertical locations; they are singular, but with the property that a spatial integration (across such singularities) generates known step functions. Thus, the vertical domain can be split in four regions (labeled in the right-hand-side of Figure 2) with specific vertical mass flows, normalized by ρAOTEC, and heat fluxes, normalized by ρcpAOTEC. The OTEC implementation area AOTEC is a passive parameter in this 1-D model, with an order-of-magnitude value of 100 million square kilometers (1014 m2); ρ and cp are representative values of the density and specific heat of seawater, e.g., 1025 kg m−3 and 4000 J kg−1 K−1. Owing to the very low thermodynamic efficiencies of OTEC cycles, an assumption that the overall OTEC process does not remove heat from the ocean is also made (lifting such assumption can be shown to result in negligible differences). Therefore, we have www δTevap ≈ wcwδTcond, where the positive temperature differences δTevap and δTcond are respectively defined by the seawater temperature of the evaporator effluent θevap = T − δTevap, and by the seawater temperature of the condenser effluent θcond = θcw + δTcond. Finally, please note that for the mixed layer to be in steady-state equilibrium, a heat flux wTp (not shown in Figure 2), where Tp is polar water temperature, must be extracted at the domain’s presumed margins to mimic deep water formation.

Figure 2. Schematic description of steady-state fluxes in one-dimensional model of the water column with OTEC and separate effluent discharges. OTEC seawater intakes are shown as circles with crosses, OTEC seawater effluent discharges as circles with a dot. Not shown is a heat flux wTp leaving the mixed layer ‘horizontally’ that would represent deep water formation far from the OTEC region.

The steady-state temperature profile in the water column can be determined from the following steady-state heat flux equations:

−Kdθdz+(w+www)θ = wTp+wwwT zevap≤z≤L, 

(1)

−Kdθdz+wθ = wTp+wcw3www(T−θcw)8(www+wcw) zcond≤z≤zevap,

(2)

−Kdθdz+(w−wcw)θ = wTp−wcwθcw zcw≤z≤zcond,

(3)

−Kdθdz+wθ = wTp  0≤z≤zcw

(4)

These first-order ordinary differential equations require only one boundary condition each, and can easily be solved, especially if we take the vertical diffusion coefficient K and background upward advection velocity w to be constant, although such an expedient choice is not necessary [11]. Since large-scale OTEC processes do affect ocean temperatures in the water column, however, one more unknown appears in the specified right-hand-sides, i.e., the cold seawater intake temperature θcw. A similar issue does not arise for the mixed-layer temperature T in a one-dimensional model under the assumption that the overall OTEC process does not remove heat from the ocean. In other words, there is only one possible steady-state mixed-layer temperature, although transient cooling does occur in time-domain calculations [5]; note that a three-dimensional model would allow permanent surface cooling in the OTEC region if surface warming occurs elsewhere [7,8,9,10]. The chosen expression for the OTEC seawater condenser warming δTcond corresponds to the simplified OTEC temperature ladder shown in Nihous [5], Figure 2.

The system is algebraically closed with the boundary conditions (−K dθ/dz + wθ) = wTp at z = 0 and θ = T at z = L, in addition to three temperature continuity conditions at zcwzcond and zevap. The published algorithm for mixed OTEC effluent discharge is recovered when zcond = zevap = zmix [4]; Region 2 in Figure 2 merely vanishes and Equation (2) need not be considered.

Before presenting results in Section 3, a few comments about this one-dimensional model are proposed to better understand the steady-state mixed-layer heat balance under various OTEC seawater discharge scenarios, while a few expected features of the seawater temperature profile may provide calculation check points. Firstly, by comparing Equations (3) and (4), we note that the z-derivative of θ is continuous at z = zcw across the OTEC cold seawater sink. Next, in the absence of OTEC operations (www = wcw = 0), the steady-state mixed-layer heat balance can be written:

{−Kdθdz(L)+wθ(L)} − wTp = 0,

(5)

where the last term in the left-hand-side corresponds to deep-water formation, and the upward heat flux from the water column (between brackets) is defined by Equation (1). With OTEC operations, and if no effluent is discharged into the mixed-layer, the steady-state mixed-layer heat balance becomes:

−wwwT+{−Kdθdz(L)+(w+www)θ(L)} − wTp = 0,

(6)

where the first term in the left-hand-side represents the OTEC warm seawater intake sink, and the upward heat flux from the water column (between brackets) is defined by Equation (1) as before. Comparing Equations (5) and (6) reveals that the z-derivative of θ at z = L remains the same whether www is zero (no OTEC) or not, i.e., dθ/dz(L) = w(T − Tp)/K.

If the OTEC evaporator effluent is discharged in the mixed layer, Region 1 in Figure 2 vanishes and Equation (1) is no longer applicable. The steady-state mixed-layer heat balance is altered as follows:

www(T−δTevap)−wwwT+{−Kdθdz(L)+wθ(L)} − wTp = 0,

(7)

where the first term in the left-hand-side represents the OTEC evaporator effluent source, and the upward heat flux from the water column (between brackets) is now defined by Equation (2). In this case, the z-derivative of θ at z = L decreases to limit diffusive heat losses from the mixed layer and compensate for the new source of cooler water; we have dθ/dz(L) = {w(T − Tp) − wwwδTevap}/K.

Finally, in the most practical case of a mixed-effluent discharge within the mixed layer (i.e., zmix = L), both Regions 1 and 2 vanish, while Equations (1) and (2) are no longer applicable. Only Regions 3 and 4 are left in Figure 2, and only Equations (3) and (4) need to be solved. The steady-state heat balance of the mixed layer is now written:

(wwwT+wcwθcw)−wwwT+{−Kdθdz(L)+(w−wcw)θ(L)} − wTp = 0,

(8)

where the first term in the left-hand-side represents the net OTEC mixed-effluent source, and the upward heat flux from the water column (between brackets) is defined by Equation (3). In this case, the z-derivative of θ at z = L further decreases to limit diffusive heat losses from the mixed layer and compensate for a net input of much cooler water; we have dθ/dz(L) = {w(T − Tp) − wcw(T − θcw)}/K. Mathematically, Equation (8) is equivalent to the mixed-layer heat balance for scenarios of artificial upwelling (of deep water) into the mixed layer [11]1, since the OTEC warm seawater source and sink contributions here cancel out.

Results
3.0 Section
Equations (1) through (4) are solved subject to their boundary conditions. Since the focus here is to explore different protocols for handling OTEC seawater effluents, several input choices in the model are kept the same as in Nihous [4]. In particular, constant values of the background diffusion and advection parameters are selected, i.e., K = 2300 m2 yr−1 and w = 4 m yr−1; solutions in each Region labeled in Figure 2 then involve simple exponentials of z and constants (or in the special case wcw = w in Region 3, a linear function of z). In addition, we set Tp = 0 °C and T = 25 °C, and select an OTEC seawater flow-rate ratio www/wcw of 2. The mixed layer is 75 m thick over a water column of 4000 m, and the OTEC deep cold seawater intake is maintained at a water depth of 1000 m (zcw = 3075 m). Variable parameters are the OTEC deep cold seawater flow rate wcw, as well as the evaporator and condenser effluent discharge depths (coordinates zevap and zcond in general). Once the temperature profile for a given OTEC scenario is known, OTEC power is determined from the following formula used in earlier work [4,5]:

Pnet = ρcpεtgAOTEC{(T−θcw)2−0.3(T−θcw|wcw= 0)28T}wcw,

(9)

where the nominal turbo-generator efficiency εtg is 0.85, and T in the denominator of the bracketed expression is the absolute steady-state temperature of the mixed layer, i.e., 298.15 K.

3.1. Separate Discharges versus Mixed Discharge under Baseline Scenarios

Figure 3. Steady-state OTEC net power as a function of overall cold seawater flow rate for baseline mixed (blue) and separate (red) effluent discharge scenarios, as well as for a mixed-effluent discharge into the mixed layer (black).

The baseline mixed effluent discharge scenario previously adopted consisted of choosing zmix at a water depth where the mixed OTEC effluent would be neutrally buoyant without OTEC (i.e., initially) [4]. Given the initial temperature profile obtained in this one-dimensional model, and since there is no consideration of salinity (which would also affect buoyancy), it corresponds here to a water depth of 253 m (zmix = 3822 m, for an initial mixed effluent temperature of 18.33 °C). This approach defines baseline OTEC effluent discharge scenarios in what follows. Accordingly, in the case of separate discharges, both evaporator and condenser effluent discharges are then assumed to be initially neutrally buoyant. This corresponds to water depths of 136 m (zevap = 3939 m, for an evaporator effluent temperature of 22.5 °C) and 602 m (zcond = 3473 m, for an initial condenser effluent temperature of 10 °C), respectively.

Figure 3 shows OTEC net power calculated from Equation (9), in terawatts, as a function of the overall OTEC deep cold seawater volume flow rate Qcw = AOTEC wcw,in sverdrups. The dotted line indicates the condition when the advective drawdown induced in Region 3 by the OTEC deep seawater intake, wcw, is exactly equal to the background upward advection rate w.

Baseline effluent discharge scenarios correspond to the blue and red curves. It is striking that separate discharges allow a maximum OTEC net power of 4.3 TW while a mixed discharge corresponds to a value of 2.7 TW. These peak values correspond to OTEC cold seawater flow rates wcw (Qcw) of 7.5 m yr−1 (23.8 Sv) and 4.5 m yr−1 (14.3 Sv), respectively. This confirms the nearly constant OTEC seawater flow intensity at peak net power production, of the order of 0.20 TW Sv−1. It indicates, in turn, that the warming of the deep cold seawater intake temperature is nearly the same in all instances of maximum OTEC net power production. This can be seen in Figure 4, where the blue and red temperature profiles are very similar below and across the deep-water intake depth of 1000 m.

Other curves demonstrate that less degradation of the temperature profile occurs with separate discharges at given OTEC flow rates. In other words, less heat penetrates the oceanic water column across the ocean-atmosphere interface during the transient phase. This heat can be quantified by the integral ρcpAOTEC∫L0{θ(t=∞,z)−θ(t=0,z)}dz: separate OTEC effluent discharges correspond to about 60% only of the value obtained for mixed discharge.

Figure 4. Seawater temperature profiles without OTEC (Initial Profile), and with OTEC under baseline (initial neutral buoyancy) effluent discharge scenarios: Separate Discharges (SD) or Mixed Discharge (MD); ‘maximum’ refers to the cold seawater flow wcw at which OTEC net power peaks.

Figure 5. Maximum OTEC net power as a function of mixed-effluent discharge depth for mixed-effluent discharge scenarios; the red line indicates the so-called baseline protocol (initial neutral buoyancy).

3.2. Mixed Discharge at Variable Depth
Next, mixed effluent discharge scenarios were considered at different depths, from the mixed layer downward. As noted earlier, a mixed discharge within the mixed layer may be the most practical choice from an engineering perspective, while it mathematically corresponds to an upwelling of deep cold seawater into the mixed layer.

Figure 5 shows the dependence of maximum OTEC net power as a function of mixed-effluent discharge depth. It is noticeable that the optimum choice of the discharge depth is close to the baseline value (initial neutral buoyancy). This suggests that all other things being equal, initial neutral-buoyancy of the discharged seawater corresponds to a minimal disturbance of the water column with a relatively more benign impact on the thermal structure. A discharge into the mixed layer only results in 2.2 TW, or about 80% of the baseline value. The variation of global OTEC net power as a function of overall OTEC deep cold seawater flow rate is also shown in this particular case in Figure 3 (black curve); peak net power production corresponds to an OTEC cold seawater flow rate wcw (Qcw) of 3.5 m yr−1 (11.1 Sv).

Figure 5. Maximum OTEC net power as a function of mixed-effluent discharge depth for mixed-effluent discharge scenarios; the red line indicates the so-called baseline protocol (initial neutral buoyancy).

3.3. Condenser-Effluent Discharge at Variable Depth (with Evaporator-Effluent Discharge within the Mixed Layer)
Here, the effect of condenser-effluent discharge depth was examined in separate discharge scenarios. Figure 6 shows the dependence of maximum OTEC net power as a function of condenser-effluent discharge depth, when the evaporator-effluent discharge is assumed to take place within the mixed layer. Maximum OTEC power production occurs at a condenser-effluent discharge depth of 705 m, i.e., once again, in the general neighborhood of the baseline value. Also, the peak power production, at 4.3 TW, is similar to the value obtained in the baseline scenario discussed in Section 3.1. This indicates that the condenser-effluent discharge depth has a much greater impact than the evaporator-effluent discharge depth.

Figure 6. Maximum OTEC net power as a function of condenser-effluent discharge depth, with the evaporator effluent discharge within the mixed layer; the red line indicates the so-called baseline protocol (initial neutral buoyancy).

Parametric calculations where both separate discharge depths were variable yielded an overall OTEC net power maximum of 4.4 TW, i.e., hardly greater than the baseline scenario value, for evaporator and condenser effluent discharge depths of 130 m and 700 m, respectively.

Acknowledgments
The costs to publish this work in open access are waived under the sponsorship of Luis Vega, Guest Editor for the special issue of JMSE on OTEC.

Conflicts of Interest
The author declares no conflict of interest.

Alcune delle foto presenti in questo blog possono essere state prese dal web, pur rispettando la netiquette, citandone ove possibile gli autori e/o le fonti. Se qualcuno desiderasse specificarne l’autore o rimuoverle, può scrivere a infoocean4future@gmail.com e provvederemo immediatamente alla correzione dell’articolo

 

PAGINA PRINCIPALE

 

PARTE I
PARTE II

Gérard Nihous
Department of Ocean and Resources Engineering, University of Hawaii, Honolulu, HI 96822, USA; Tel.: +1-808-956-2338

References

1 Martin, P.J.; Roberts, G.O. An estimate of the impact of OTEC operation on the vertical distribution of heat in the Gulf of Mexico. In Proceedings of the 4th Annual Conference on OTEC, New Orleans, LA, USA, 22–24 March 1977; pp. 26–34. [Google Scholar]
2 Nihous, G.C.; Masutani, S.M.; Vega, L.A.; Kinoshita, C.M. Projected impact of deep ocean carbon dioxide discharge on atmospheric CO2Clim. Chang. 199427, 225–244. [Google Scholar] [CrossRef]
3 Nihous, G.C.; Masutani, S.M.; Vega, L.A.; Kinoshita, C.M. Preliminary assessment of the potential coupling between atmospheric temperature and CO2concentration via ocean water overturning. Energy Convers. Manag. 199637, 1039–1048. [Google Scholar] [CrossRef]
4 Nihous, G.C. An order-of-magnitude estimate of Ocean Thermal Energy Conversion resources.  Energy Resour. Technol.2005127, 328–333. [Google Scholar] [CrossRef]
5 Nihous, G.C. A preliminary assessment of Ocean Thermal Energy Conversion (OTEC) resources.  Energy Resour. Technol.2007129, 10–17. [Google Scholar] [CrossRef]
6 Nihous, G.C. An estimate of Atlantic Ocean Thermal Energy Conversion (OTEC) resources. Ocean Eng.200734, 2210–2221. [Google Scholar] [CrossRef]
7 Rajagopalan, K.; Nihous, G.C. Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an Ocean General Circulation Model.  Energy 201350, 532–540. [Google Scholar] [CrossRef]
8 Rajagopalan, K.; Nihous, G.C. An assessment of global Ocean Thermal Energy Conversion (OTEC) resources with a high-resolution Ocean General Circulation Model.  Energy Resour. Technol.2013135, 041202. [Google Scholar] [CrossRef]
9 Rajagopalan, K.; Nihous, G.C. An assessment of global Ocean Thermal Energy Conversion resources under broad geographical constraints.  Renew. Sustain. Energy20135, 063124. [Google Scholar] [CrossRef]
10 Jia, Y.; Nihous, G.C.; Rajagopalan, K. An evaluation of the large-scale implementation of Ocean Thermal Energy Conversion (OTEC) using an ocean general circulation model with low-complexity atmospheric feedback effects.  Mar. Sci. Eng.20186, 12. [Google Scholar] [CrossRef]
11 Nihous, G.C. Assessment of the evolution of water-column stratification following the hypothetical implementation of widespread controlled upwelling in the North Pacific Subtropical Gyre.  Mar. Environ. Eng. 20129, 175–189. [Google Scholar]
12 Rajagopalan, K.; Nihous, G.C. Predictions of water-column properties under widespread artificial upwelling scenarios in the North Pacific Subtropical Gyre using an ocean general circulation model.  Mar. Environ. Eng. 20149, 285–304. [Google Scholar]
13 Avery, W.H.; Wu, C. Renewable Energy from the Ocean; Oxford University Press: New York, NY, USA, 1994; p. 446. ISBN 0195071999. [Google Scholar]
14 Manikowski, A.F. Deep water condenser OTEC using carbon dioxide working fluid. In Proceedings of the OCEANS’95 MTS/IEEE Conference, San Diego, CA, USA, 9–12 October 1995; Volume 2, pp. 1092–1099. [Google Scholar]
15 Srinivasan, N. A new improved Ocean Thermal Energy Conversion system with suitable vessel design. In Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009; Volume 4, pp. 1119–1129. [Google Scholar]
16 Fachina, V. Deep-Subsea OTEC.  Eng. Res.20177, 9. [Google Scholar] [CrossRef]
17 1There are typographic errors in [11], Equation (7): within the bracket, Tshould replace T0and −QupT is missing.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

 

Alcune delle foto presenti in questo blog possono essere state prese dal web, pur rispettando la netiquette, citandone ove possibile gli autori e/o le fonti. Se qualcuno desiderasse specificarne l’autore o rimuoverle, può scrivere a infoocean4future@gmail.com e provvederemo immediatamente alla correzione dell’articolo

 

PAGINA PRINCIPALE
print
(Visited 127 times, 1 visits today)
Share

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Legenda

Legenda

livello elementare articoli per tutti

livello medio articoli che richiedono conoscenze avanzate

livello difficile articoli specialistici

Traduzione

La traduzione dei testi è fornita da Google translator in 42 lingue diverse. Non si assumono responsabilità sulla qualità della traduzione

La riproduzione, anche parziale, a fini di lucro, e la pubblicazione per qualunque utilizzo degli articoli e delle immagini pubblicate è sempre soggetta ad autorizzazione da parte dell’autore degli stessi che può essere contattato tramite la seguente email: infoocean4future@gmail.com


If You Save the Ocean
You Save Your Future

OCEAN4FUTURE

Salve a tutti. Permettetemi di presentare in breve questo sito. OCEAN4FUTURE è un portale, non giornalistico, che pubblica articoli e post di professionisti e accademici che hanno aderito ad un progetto molto ambizioso: condividere la cultura del mare in tutte le sue forme per farne comprendere la sua importanza.

Affrontiamo ogni giorno tematiche diverse che vanno dalla storia alle scienze, dalla letteratura alle arti.
Gli articoli e post pubblicati rappresentano l’opinione dei nostri autori e autrici (non necessariamente quella della nostra redazione), sempre nel pieno rispetto della libertà di opinione di tutti.
La redazione, al momento della ricezione degli stessi, si riserva di NON pubblicare eventuale materiale ritenuto da un punto di vista qualitativo non adeguato e/o non in linea per gli scopi del portale. Grazie di continuare a seguirci e condividere i nostri articoli sulla rete.

Andrea Mucedola
Direttore OCEAN4FUTURE

Chi c'é online

24 visitatori online

Ricerca multipla

Generic selectors
Exact matches only
Search in title
Search in content
Filter by Categories
Archeologia
Associazioni per la cultura del mare
Astronomia e Astrofisica
Biologia
Cartografia e nautica
Chi siamo
Climatologia
Conoscere il mare
Didattica
Didattica a distanza
disclaimer
Ecologia
Emergenze ambientali
Fotografia
Geologia
geopolitica
Gli uomini dei record
I protagonisti del mare
Il mondo della vela
L'immersione scientifica
La pesca
La pirateria
La subacquea ricreativa
Lavoro subacqueo - OTS
Le plastiche
Letteratura del mare
Malacologia
Marina mercantile
Marine militari
Materiali
Medicina
Medicina subacquea
Meteorologia e stato del mare
nautica e navigazione
Normative
Ocean for future
OCEANO
Oceanografia
per conoscerci
Personaggi
Pesca non compatibile
Programmi
Prove
Recensioni
Reportage
SAVE THE OCEAN BY OCEANDIVER campaign 4th edition
Scienze del mare
Sicurezza marittima
Storia della subacquea
Storia della Terra
Storia Navale
Storia navale del Medioevo (post 476 d.C. - 1492)
Storia Navale dell'età antica (3.000 a.C. - 476 d.C,)
Storia navale dell'età moderna (post 1492 - oggi)
Storia navale della prima guerra mondiale (1914-1918)
Storia navale della seconda guerra mondiale (1939 - 1945)
Storia navale Romana
Subacquea
Subacquei militari
Sviluppi della scienza
Sviluppo compatibile
Tecnica
Uomini di mare
Video
Wellness - Benessere
 i nodi fondamentali

I nodi fanno parte della cultura dei marinai ... su Amazon puoi trovare molti libri sul mare e sulla sua cultura :) clicca sull'immagine ed entra in un nuovo mondo :)

Follow me on Twitter – Seguimi su Twitter

Tutela della privacy – Quello che dovete sapere

> Per contatti di collaborazione inviate la vostra richiesta a infoocean4future@gmail.com specificando la vostra area di interesse
Share
Translate »