Ocean for Future

Ultima Clock Widget

  • :
  • :

Vediamo che tempo fa o farà

Diamo un’occhiata al tempo meteorologico

Meteo facile per tutti: vediamo che tempo fa o farà prossimamente con un insieme di link per aggiornarvi in tempo reale sulle condizioni meteorologiche locali e marine 


Deep sea mining: coming soon to an ocean near by Carlos Duarte

tempo di lettura: 5 minuti

livello elementare
parole chiave: geologia


The depletion of resources on land together with the increase in resource demand and the parallel development in technologies for deep sea exploration have brought the issue of deep-sea mining to the forefront of political, industrial and scientific debate. Shallow submarine mining is already a reality in coastal areas, such as the De Beers Marine diamond mining operation in Namibia, in depths up to 150 metres. The current challenge is to move these operations to the deep sea, which contains vast resources of minerals, including manganese, iron, nickel, copper, cobalt, rare earths and gold, often associated with areas of volcanic activity. Whereas nations are sovereign to regulate seabed mining within their economic exclusive zones, the access to resources in the seabed and ocean floor beyond these national jurisdiction waters, referred in United Nation Convention on the Law of the Sea (UNCLOS) as “the Area”, is organized and controlled by the autonomous international organization called “International Seabed Authority” initially established under UNCLOS.


Carbonate chimneys at inactive hydrothermal vent sites of Lost City, Mid Atlantic Ridge. (c ) IFREMER, Exomar cruise 2005

To date, the International Seabed Authority has entered into seventeen 15-year contracts for exploration for polymetallic nodules and polymetallic sulphides in the deep seabed with thirteen contractors. Eleven of these contracts are for exploration for polymetallic nodules in the Clarion Clipperton Fracture Zone in the Pacific, with two contracts for exploration for polymetallic sulphides in the South West Indian Ridge and the Mid Atlantic Ridge.


Beach of nodules in the Clarion Clipperton zone, Eastern Pacific (c) IFREMER, France, Nodinaut cruise 2004


These contracts allow the contractors to explore specified parts of the deep oceans outside national jurisdiction, giving each contractor the exclusive right to explore an initial area of up to 150,000 km2. Russia, China, Korea, Germany and and France are the nations involved in most of these contracts, which include contracts for small nations, such as Nauru, Kiribati and Tonga, whom would likely open them up to tender by international companies. Indeed, at a summit on Deep-Sea Mining in London two months ago Mark Brown, Minister of Minerals and Natural Resources of the Cook Islands, announced that the Cook Islands is embracing deep-sea mining as a pathway to multiply the country’s gross domestic product by up to 100 fold, as they assessed that the Cook Islands’ 2 million Km2 exclusive economic zone contains 10 billion tons of manganese nodules, which contain manganese, nickel, copper, cobalt and rare earth minerals used in electronics. Negotiations are under way between the Cook Islands and companies in the UK, China, Korea, Japan and Norway, towards granting the first tenders within a year. These facts suggest that we may soon face and underwater gold rush, but in most citizen’s minds deep-sea mining is still something for sci-fic movies. Much to the contrary, the technology for deep-sea mining is not something of the future but it is largely existing. A deep-sea mining operation consists of a mining support platform or vessel; a launch and recovery system; a crawler with a mining head, centrifugal pump and vertical transport system; and electrical, control, instrumentation and visualization systems. Companies such as Lockheed Martin, Soil Machine Dynamics, IHC Mining and Bauer or Nautilus Minerals are developing vehicles for deep-sea mining, pledging they are in the position to readily develop techniques to operate down to 5,000 metre depth. Indeed, the submarine vehicles required are already in existence and their operations are described in compelling animations.

Besides direct removal of parts of the sea floor during mineral collection, increased toxicity and turbidity is expected in the water column due to sediment resuspension during the extraction (ie near bottom) and tailings rejection after minerals are sorted on the floating plateform (ie near the surface) resulting in clouds of particles forming plumes. Waste will represent most, 90%, of the volume of materials pumped to surface and, thus, seabed operations will deposit massive amounts of waste at the sea floor. This waste can, in turn, release massive amounts of metals and other elements to the surrounding water, impacting on the ecosystems that thrive near these deep sea mining sites. While near bottom resuspended sediment may cause a major threat to local communities, surface plumes generated by tailing may have a wider impact by affecting larger areas. Here is, however, where the main problem lies. Deep sea communities are very poorly characterized and mapped, and even where a reasonable taxonomic knowledge could be claimed and communities mapped over accurate scales, their sensitivity to these impacts is unknown. Despite these uncertainties, there is little doubt that losses of fragile deep-sea communities during the operations will be unavoidable, and the focus of industry and scientists is placed in the ecological restoration of the deep sea from impacts of mining.

The International Marine Minerals Society has developed a voluntary Code for Environmental Management of Marine Mining that recommends that plans for deep sea mining include at the outset procedures that “aid in the recruitment, re-establishment and migration of biota…”. The first impact assessment for a deep-sea mining project has now been produced. This was commissioned by Nautilus Minerals Inc., incorporated in Canada but also present in Australia (Queensland). Nautilus was granted the first mining lease for polymetallic seafloor massive sulphide deposits at the prospect known as Solwara 1, in the territorial waters of Papua New Guinea, where it is aiming to extract copper, gold and silver. The company, which is likely to be the first one to implement deep-sea mining is also looking at operating in the exclusive economic zones and territorial waters of Fiji, Tonga, the Solomon Islands, Vanuatu and New Zealand.

A workshop, promoted by Nautilus Minerals Inc., was held in Sète (France) in November 2012, including one of us (S.A.-H.) to consider the feasibility of ecological restoration of the deep sea following mining operations. The outcomes of the workshop are reported in a paper, including coauthors from Nautilus Minerals Inc, published in the journal Marine Policy (Van Dover et al. 2013). This exercise indicated that most of the direct costs (80%) for a deep-sea mining restoration programs would be associated with ship use, including use of remotely operated and autonomous underwater vehicles. The experts attending this workshop concluded that deep-sea restoration will be expensive, but that cost alone should not be a reason for inaction and that restoration should be included in project budgets. They concluded that where restoration costs are prohibitive, offsetting options can be explored but that neither restoration nor rehabilitation objectives or commitments should be taken as a ‘license to trash’. A record of disasters in the offshore oil and gas industry, as well as deep sea fisheries, shows that there is a high price to pay in allowing industry to move offshore faster than scientific research does, yet only a handful of nations – which do not include Australia – are sufficiently equipped for deep sea scientific exploration as to keep pace with industry. The basic knowledge (taxonomic inventories, habitat mapping, characterization of faunal assemblages and dynamics of deep species interactions, …) of deep sea ecosystems and the evaluation of their vulnerability, recovery time scales and processes is a matter of urgency, but this goals cannot be met without significant investments in capabilities for deep-sea research. Providing the immediacy of deep-sea mining, the investment in scientific infrastructure and research to provide the scientific underpinnings for the safe and sustainable mining operations in the deep-sea is an imperative.

Director, Oceans Institute
University of Western Australia

This piece has been co-autored with Sophie Arnaud-Haond, IFREMER, France.


Alcune delle foto presenti in questo blog possono essere state prese dal web, citandone ove possibile gli autori e/o le fonti. Se qualcuno desiderasse specificarne l’autore o rimuoverle, può scrivere a infoocean4future@gmail.com e provvederemo immediatamente alla correzione dell’articolo



Van Dover, C.L., J. Aronson, L. Pendleton, S. Smith, Sophie Arnaud-Haond, D. Moreno-Mateos, E. Barbier, D.Billett, K.Bowers, R.Danovaro, A.Edwards, S. Kellert, T.Morato, E.Pollard, A.Rogers and R.Warner. 2013. Ecological restoration in the deep sea: Desiderata. Mar. Policy, http://dx.doi.org/ 10.1016/j.marpol.2013.07.006i


(Visited 198 times, 1 visits today)
0 0 voti
Article Rating
0 Commenti
Inline Feedbacks
vedi tutti i commenti




livello elementare
articoli di facile lettura

livello medio
articoli che richiedono conoscenze avanzate

livello difficile
articoli di interesse specialistico


Attenzione: È importante ricordare che gli articoli da noi pubblicati riflettono le opinioni e le prospettive degli autori o delle fonti citate, ma non necessariamente quelle di questo portale. E’ convinzione che la diversità di opinioni è ciò che rende il dibattito e la discussione più interessanti, aiutandoci a comprendere tutti gli aspetti della Marittimità

Chi c'é online

5 visitatori online

Ricerca multipla

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
Associazioni per la cultura del mare
Astronomia e Astrofisica
Cartografia e nautica
Chi siamo
Conoscere il mare
Didattica a distanza
Emergenze ambientali
Gli uomini dei record
I protagonisti del mare
Il mondo della vela
L'immersione scientifica
La pesca
La pirateria
La subacquea ricreativa
Lavoro subacqueo - OTS
Le plastiche
Letteratura del mare
Marina mercantile
Marine militari
Medicina subacquea
Meteorologia e stato del mare
Miti e leggende del mare
nautica e navigazione
Ocean for future
per conoscerci
Pesca non compatibile
SAVE THE OCEAN BY OCEANDIVER campaign 4th edition
Scienze del mare
Sicurezza marittima
Storia contemporanea
Storia Contemporanea
Storia della subacquea
Storia della Terra
Storia Navale
Storia navale del Medioevo (post 476 d.C. - 1492)
Storia Navale dell'età antica (3.000 a.C. - 476 d.C,)
Storia navale dell'età moderna (post 1492 - oggi)
Storia navale della prima guerra mondiale (1914-1918)
Storia navale della seconda guerra mondiale (1939 - 1945)
Storia navale Romana
Subacquei militari
Sviluppi della scienza
sviluppi tecnologici
Sviluppo compatibile
Uomini di mare
Wellness - Benessere

I più letti di oggi

I più letti in assoluto

Tutela della privacy – Quello che dovete sapere

> Per contatti di collaborazione inviate la vostra richiesta a infoocean4future@gmail.com specificando la vostra area di interesse
5 visitatori online
5 ospiti, 0 membri
Complessivo: 742 alle 21-09--2018 06:47 pm
Numero max di visitatori odierni: 20 alle 12:08 am
Mese in corso: 120 alle 20-06--2024 08:56 pm
Anno in corso: 120 alle 20-06--2024 08:56 pm
Translate »
Cosa ne pensate?x