.
livello elementare
.
ARGOMENTO: EMERGENZE AMBIENTALI
PERIODO: XXI SECOLO
AREA: DIDATTICA
parole chiave: nanotecnologie, graphene
Swarms of graphene-coated nanobots could be our best hope yet of cleaning up the murky oceans, with scientists demonstrating that new microscopic underwater warriors can remove up to 95 percent of lead in wastewater in just one hour.
The invention couldn’t have come at a better time, with ocean pollution at an all-time high, much of it stemming from industrial activities such as electronics manufacturing. By 2050, it’s estimated that there will be more plastic than fish in the world’s oceans, and waste metals such as lead, arsenic, mercury, cadmium, and chromium are affecting the delicate ecological balance that will make things very difficult for any animal that relies on it for food – including humans – in the near future.
Developed by an international team of researchers, the newly developed nanobots have three key components: a graphene oxide exterior to absorb lead (or another heavy metal); a nickel core that enables researchers to control the nanobots’ movement via a magnetic field; and an inner platinum coating that functions as an engine and propels the bots forward via a chemical reaction with hydrogen peroxide. Once they’ve made one pass, the nanobots – which are smaller than the width of a human hair – can be deployed again for further sweeps.
Thanks to their skill at cleaning up water, and the way they can be reused, the scientists behind the development of the nanobots think they could be more effective and more economical than existing solutions.
“This is a new application of smart nanodevices for environmental applications,” one of the team, Samuel Sánchez from the Max-Planck Institute for Intelligent Systems in Germany, told Phys.org. “The use of self-powered nanomachines that can capture heavy metals from contaminated solutions, transport them to desired places and even release them for ‘closing the loop’ – that is a proof-of-concept towards industrial applications.” While the nanobots used in these experiments were controlled using a precise magnetic field, in the future, they could guide themselves autonomously according to the researchers.
Further studies will also focus on attacking different types of contaminants and reducing the costs of fabricating the bots in the first place. The same magnetic field used to direct the nanobots is used to collect them in afterwards. At this point, an acidic solution is used to remove the lead ions and the bots are ready to go again. Eventually, the same sort of techniques could be used in other areas such as drug delivery.
The group’s work has been published in Nano Letters. Nano Letters is a monthly peer-reviewed scientific journal published by the American Chemical Society. It was established in January 2001. The two editors-in-chief are A. Paul Alivisatos (University of California, Berkeley) and Charles M. Lieber (Harvard University). The 2010 impact factor for Nano Letters is 12.219, according to the Journal Citation Reports. The focus of the journal is rapid dissemination of selected elements regarding fundamental, original research reports on all topics related to the theory and practice of nanoscience and nanotechnology and their subdisciplines. Physical, chemical, and biological phenomena related to nanoscience and nanotechnology are part of this focus. Furthermore nanoscale materials science is also included, focusing on processes and applications of structures at this size. Subject coverage encompasses the following: Materials that are synthesized and processed by physical, chemical, and biological methods. The classes of these materials are organic, inorganic, and hybrid. Furthermore, these processes are subjects of modeling and simulation. Specifically these process range from synthesis to assembly, along with relevant interactions.
What nanobots are?
Nanorobotics is an emerging technology field creating machines or robots whose components are at or close to the scale of a nanometre (10−9 meters). More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1–10 micrometers and constructed of nanoscale components. The names nanobots, nanoids, nanites, nanomachines, or nanomites have also been used to describe these devices currently under research and development. The first useful applications of nanomachines might be in nanomedicine as biological machines whon could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment as in the water.
written by David Nield
originally published by http://www.sciencealert.com/
Una sorpresa per te su Amazon Music unlimited Scopri i vantaggi di Amazon Prime
Alcune delle foto presenti in questo blog possono essere state prese dal web, citandone ove possibile gli autori e/o le fonti. Se qualcuno desiderasse specificarne l’autore o rimuoverle, può scrivere a infoocean4future@gmail.com e provvederemo immediatamente alla correzione dell’articolo
,

La redazione di OCEAN4FUTURE è composta da collaboratori che lavorano in smart working scelti tra esperti di settore che hanno il compito di redigere e pubblicare gli articoli di non loro produzione personale. I contenuti restano di responsabilità degli autori che sono sempre citati. Eventuali quesiti possono essere inviati alla Redazione che provvederà ad inoltrarli agli Autori.
Lascia un commento