Ocean for Future

Ultima Clock Widget

  • :
  • :

Vediamo che tempo fa o farà

Diamo un’occhiata al tempo meteorologico

Meteo facile per tutti: vediamo che tempo fa o farà prossimamente con un insieme di link per aggiornarvi in tempo reale sulle condizioni meteorologiche locali e marine 

  Address: OCEAN4FUTURE

Modelli a bolle – Storia e Benchmark del VPM – parte II

tempo di lettura: 5 minuti

.
livello medio
.
ARGOMENTO: SUBACQUEA
PERIODO: XXI SECOLO
AREA: DIDATTICA
parole chiave: VPM, computer subacqueo, benchmark

 

Storia e Benchmark del VPM
Tralasciando  i primi modelli di computer subacquei, apparsi negli anni ’60, il modello a permeabilità variabile, (VPM) fu sviluppato in un arco di tempo che va dalla seconda metà degli anni 80 ai primi anni 2000.  

old computer

MARK V S sviluppato dal DCIEM (Defence and Civil Institute for Environmental Medicine) fu il primo computer venduto all’industria ed ai militari  negli anni ’60. Non era disponibile ai ricreativi che all’epoca erano molto pochi. SCUBA SCOOP/latest dive stories: History of the Dive Computer (scubascoop-kirkscubagear.blogspot.com)

Il lavoro iniziale di ricerca fu svolto a partire dagli anni ’70 dal prof. David Yount, del dipartimento di fisica e astronomia dell’Università delle isole Hawaii, che pubblicò alcuni articoli scientifici sul tema della formazione e dinamica delle bolle, e successivamente giunse alla progettazione di un modello per il calcolo decompressivo nelle immersioni subacquee. Lo sviluppo delle prime tabelle decompressive basate sul VPM risale al 1986, grazie al lavoro di David Yount e Don C. Hoffman. L’algoritmo del VPM da loro sviluppato fu reso disponibile alla comunità dei programmatori nel 1995. Nel frattempo Eric B. Maiken aveva sviluppato a partire dal 1990  la codifica software del modello decompressivo, includendo la possibilità di utilizzare miscele nitrox e trimix, e distribuì questo programma sviluppato in linguaggio Basic nel 1994.

Da allora il modello fu lungamente rivisto, modificato, adattato e testato con il contributo di ricercatori, “tech divers”, appassionati e specialisti, tra i quali in particolare Erik C. Baker. Nel 2000, anno della morte del professor Yount, il modello VPM fu finalizzato, ed Erik Baker completò la codifica del programma in linguaggio fortran.  Ancora due anni per ottenere nel 2002 la versione che costituisce l’attuale standard del modello VPM, il VPM-B.

Rispetto ai più collaudati modelli liquidi,  il VPM produce mediamente profili con tappe iniziali più profonde e tappe vicine alla superficie più brevi.   Questa diversità rispetto ai modelli haldaneani si spiega con lo schiacciamento dei nuclei di bolle nella fase di discesa, più accentuato per i compartimenti lenti. Naturalmente maggiore è lo schiacciamento dei nuclei e minore è l’onere decompressivo, quindi saranno i compartimenti lenti ad essere meno penalizzati. Poiché le tappe più profonde sono dovute ai compartimenti veloci mentre quelle più superficiali ai compartimenti lenti, ne risulta una accentuazione di profondità e durata delle tappe più profonde e l’alleggerimento  di quelle più superficiali. Tutto questo ha maggior effetto nelle immersioni più profonde, per le quali lo schiacciamento può raggiungere valori più elevati.

I tempi di non decompressione (NDL) per immersioni in aria risultano sostanzialmente  in linea con quanto previsto dai modelli “liquidi”. Anche il VPM non sfugge a critiche, come del resto ogni altro modello decompressivo, in particolare circa le approssimazioni e assunzioni che debbono essere accettate perché il modello funzioni. Il suo maggior pregio è essere un modello più aderente alla realtà rispetto ai modelli liquidi, ed è attualmente molto utilizzato per la pianificazione di immersioni “tecniche”.

Il vantaggio nel suo utilizzo è pratico ma anche di prospettiva, in quanto ha aperto una strada completamente nuova e più coerente, allettante soprattutto per i margini di miglioramento e perfezionamento che potrà garantire in futuro.

Questa immagine ha l'attributo alt vuoto; il nome del file è DSC_8143-1-1024x754.jpg

photo credit andrea mucedola

Come “ragiona” il VPM
Ciò che il VPM deve stimare e tenere sotto controllo è il gas totale contenuto nelle bolle che cresceranno di volume, determinato dal gradiente di sovrasaturazione.  Il  modello VPM adotta sia i criteri del modello liquido di Bühlmann a sedici compartimenti (ZH-L16), per misurare la quantità di inerte disciolto nei tessuti, sia i criteri del modello a bolle per stimare il volume totale di inerte presente in forma gassosa.   Il VPM calcola un profilo di risalita ottimale in modo che il volume totale di gas accumulato nelle bolle al termine dell’intero processo sia al di sotto di un valore limite, ritenuto tollerabile dall’organismo senza dare problemi di PDD. Il volume finale di inerte in forma gassosa, contenuto in bolle con raggio superiore a quello critico, dipende dal  gradiente di sovrasaturazione G, cioè dal profilo di risalita adottato. Permettere un G grande, ovvero una ampia sovrasaturazione, e quindi soste decompressive di minor numero e durata, comporta accettare un maggior volume finale di gas nelle bolle, e quindi una situazione meno conservativa. Se invece si fissa G ad un valore più contenuto, il computer  richiede decompressioni più lunghe ma consente una minore crescita delle bolle, e quindi comporta maggiore sicurezza.

Il VPM deve trovare il maggior valore di G che comporti un volume totale di gas nelle bolle entro il limite consentito al termine del processo; è un pò come dire: conosciuto in anticipo il limite massimo ammissibile per volume totale di gas entro le bolle, ottenuto come risultato di un processo evolutivo complesso, bisogna determinare il parametro che ne determina le condizioni iniziali, ovvero il gradiente di sovrasaturazione G, in base al quale stabilire il profilo decompressivo.

Il metodo di ragionamento del VPM può essere sintetizzato così:

  • fissa un valore di G iniziale molto ridotto, quindi estremamente conservativo, secondo un criterio rigido;
  • stima il profilo e quindi il tempo totale di risalita necessario a non superare G per ogni compartimento, in questo è simile ad un modello “liquido”;
  • stima in funzione di G il numero di nuclei attivati;
  • stima il volume totale di gas che finirà nelle bolle in tutto il tempo di risalita più un intervallo di superficie di 24 o 48 ore;
  • confronta il valore ottenuto con il valore limite massimo accettabile; se esso è inferiore al limite ricomincia il processo a partire da un valore di G incrementato.

L’intero procedimento con confronto finale viene quindi ripetuto finché il risultato ottenuto sia sufficientemente vicino al valore massimo tollerabile senza superarlo.   Quando ciò avviene il profilo corrispondente è considerato quello finale da adottare per la risalita.

Tenere conto della legge di Boyle, ovvero all’espansione di una bolla durante la risalita a causa della riduzione di pressione idrostatica, equivale nel VPM ad introdurre un fattore di conservativismo nel modello, che prende in questo modo il nome di VPM-B (B sta per Boyle).  Questo prolunga i tempi di permanenza per ciascuna tappa e quindi il tempo totale di decompressione, maggiormente per le tappe vicine alla superficie in quanto la legge di Boyle esercita la sua influenza soprattutto alle basse profondità.

La versione “B” del VMP ha visto la luce definitiva nel 2002, e costituisce la versione del VPM correntemente utilizzata.

Luca Cicali

in anteprima – photo credit @andrea mucedola

 

 

Alcune delle foto presenti in questo blog sono prese dal web, pur rispettando la netiquette, citandone ove possibile gli autori e/o le fonti. Se qualcuno desiderasse specificarne l’autore o chiedere di rimuoverle, può scrivere a infoocean4future@gmail.com e provvederemo immediatamente alla correzione dell’articolo
,

PAGINA PRINCIPALE - HOME PAGE

Loading

(Visited 793 times, 1 visits today)
Share
0 0 voti
Article Rating
Sottoscrivi
Notificami
1 Comment
più recente
più vecchio più votato
Inline Feedbacks
vedi tutti i commenti
BERUTTI STEFANO
Ospite
BERUTTI STEFANO
18/12/2017 21:18

All’epoca in cui il Professor John Scott Haldane condusse le ricerche e i studi sulla fisiologia della decompressione e sperimentava con la Commissione per le Immersioni in Alta profondità approvata dall’Ammiragliato inglese le norme procedurali da adottare nelle immersioni, un altro eminente studioso, Professor Leonard Hill, nel suo “Critical Pressure Hipotesis” pubblicato nel 1912, elaborò l’ipotesi sulla pressione critica delle bolle evidenziando come il “momento critico” si verificasse allorquando la tensione del gas inerte nei tessuti superava quella ambiente di un determinato valore.
Forse negli studi condotti dal Professor Hill, (per quanto mi risulta mai messi in discussione) potrebbe già intravedersi quanto, molti anni dopo, in modo più completo ed approfondito emergerà dagli studi del Professor Yount, chiaramente illustrati nel presente articolo.
Grazie per la cortese attenzione.

Translate:

Legenda

Legenda

livello elementare
articoli di facile lettura

livello medio
articoli che richiedono conoscenze avanzate

livello difficile
articoli di interesse specialistico

 

Attenzione: È importante ricordare che gli articoli da noi pubblicati riflettono le opinioni e le prospettive degli autori o delle fonti citate, ma non necessariamente quelle di questo portale. E’ convinzione che la diversità di opinioni è ciò che rende il dibattito e la discussione più interessanti, aiutandoci a comprendere tutti gli aspetti della Marittimità

Chi c'é online

14 visitatori online

Ricerca multipla

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Filter by Categories
Archeologia
Associazioni per la cultura del mare
Astronomia e Astrofisica
Biologia
Cartografia e nautica
Chi siamo
Climatologia
Conoscere il mare
Didattica
Didattica a distanza
disclaimer
Ecologia
Emergenze ambientali
Fotografia
Geologia
geopolitica
Gli uomini dei record
I protagonisti del mare
Il mondo della vela
L'immersione scientifica
La pesca
La pirateria
La subacquea ricreativa
Lavoro subacqueo - OTS
Le plastiche
Letteratura del mare
Malacologia
Marina mercantile
Marine militari
Materiali
Medicina
Medicina subacquea
Meteorologia e stato del mare
Miti e leggende del mare
nautica e navigazione
Normative
Ocean for future
OCEANO
Oceanografia
per conoscerci
Personaggi
Pesca non compatibile
Programmi
Prove
Recensioni
Reportage
SAVE THE OCEAN BY OCEANDIVER campaign 4th edition
Scienze del mare
Sicurezza marittima
Storia Contemporanea
Storia contemporanea
Storia della subacquea
Storia della Terra
Storia Navale
Storia navale del Medioevo (post 476 d.C. - 1492)
Storia Navale dell'età antica (3.000 a.C. - 476 d.C,)
Storia navale dell'età moderna (post 1492 - oggi)
Storia navale della prima guerra mondiale (1914-1918)
Storia navale della seconda guerra mondiale (1939 - 1945)
Storia navale Romana
Subacquea
Subacquei militari
Sviluppi della scienza
Sviluppo compatibile
Tecnica
Uomini di mare
Video
Wellness - Benessere

I più letti di oggi

I più letti in assoluto

Tutela della privacy – Quello che dovete sapere

> Per contatti di collaborazione inviate la vostra richiesta a infoocean4future@gmail.com specificando la vostra area di interesse
15 visitatori online
15 ospiti, 0 membri
Complessivo: 742 alle 21-09--2018 06:47 pm
Numero max di visitatori odierni: 33 alle 08:24 am
Mese in corso: 118 alle 06-04--2024 04:33 am
Anno in corso: 118 alle 06-04--2024 04:33 am
Share
Translate »
1
0
Cosa ne pensate?x